User Manual of Amplicon Seuqnce Analysis Procedure for Galaxy-based pipeline in Denglab

http://mem.rcees.ac.cn:8080

Updated

Nov. 2018

@ Denglab

Metagenomics for Environmental Microbiology (MEM)

Research Center for Eco-Environmental Sciences, CAS

Steps of amplicon sequencing data (16S/ITS/18S/Functional gene) preprocessing on Galaxy pipeline and basic statistical analysis procedures in Denglab

Content

A. Data Treatment and quanlity control	1
1. Upload File	1
2. Detect barcodes(FASTQ)	2
3. Trim Primer(FASTQ)	2
4. Remove end base (FASTQ) (Optional)	3
5. Flash (Combine R1 and R2) (FASTQ)	3
6. Btrim (FASTQ)	4
7. Extract FASTA from FASTQ	5
8. Trim N (FASTA) (Trimming sequences containing "N")	5
9. Trim by Sequence Length	6
10. Framebot (optional; only necessary for functional genes)	7
11. Generate OTU table	7
UPARSE (Recommend; UPARSE for FASTA)	7
UNOISE (Unoise for FASTA to generate ZOTUs)	8
UNOISE (Unoise for FASTA using Vsearch)	8
Deblur	9
Uclust	10
12. ITSx Extractor (Optional for ITS)	11
13. Compare otu table to sequence file (optional)	13
14. Rarefaction Curve	13
15. RDP Classifier	14
16. Resample OTU table	15
B. Statistics analysis	17
1. Diversity methods	17
1.1 α -diversity (Calculate taxonomy alpha diversity and evenness)	17
1.2 Hill number	17
1.3 β-diversity	18
2. Community structure	18
2.1 PCA	18
2.2 DCA	19
2.3 NMDS	19
2.4 PD&PCoA	20
2.5 Relative abundance	21

3. Comparison analysis	
3.1 Response ratio calculation	
3.2 Paired and unpaired t test	
3.3 Dissimilarity (MRPP, adonis, anosim)	
4. Environmental associations	
4.1 Correlation test	
4.2 Multivariate Regression Tree (MRT)	
4.3 BioEnv Analysis	
4.4 CCA	
4.5 Mantel Test	
5. Plotting figures	
5.1 Venn Diagrams	
5.2 Heatmap	
5.3 Hierarchical cluster	
C. Ecological process analysis	
1. Null model test	
2. Null model test on Permdisp	
3. Beta NTI calculation	
4. RC distance	
5. Summary ecological process	
D. Functional profile prediction approaches	
1. PICRUSt	
1.1 Pick up ref OTU	
1.2 Normalize by Copy Number	
1.3 Predict Metagenome	
1.4 Categorize by Function	
Convert Biom to Tabular	
2. Tax4Fun	
2.1 Preparation for Tax4Fun	
2.2 Tax4Fun	
3. FAPROTAX	
4. BugBase	
4.1 Pick up ref OTU	
4.2 BugBase Analysis	
5. FunGuild	

E. Other analysis tools in microbial ecology	
1. LEfSe	
1.1 Input prepare for LefSe anlaysis	
1.2 A) Format Data for LefSe	
1.3 B) LDA Effect Size (LEfSe)	
1.4 C) Plot LEfSe Results	
1.5 D) Plot Cladogram	
1.6 E) Plot One Feature	
1.7 F) Plot Differential Features	
2. Source Tracker	
F. Auxilliary tools in miscellaneous section	
1. FastQC	
2. Split files into separated samples	
3. FASTQ format check	
4. Length Statistics	
5. Sequence number for each tag	
6. Merge and add tags for each sequence	
7. Merge files	
8. Data location	
G. Operation tricks and common problem solutions	
1. Basic operations in Galaxy	
2. Shared test datasets	
3. Shared libraries	
4. Dataset deletions	
5. Share historys to other users	

If you are interested in other popular analysis tools and want to make a contribution for our pipeline, please contact Prof. Ye Deng (<u>yedeng@rcees.ac.cn</u>).

A. Data Treatment and quanlity control

1. Upload File

Upload the three sequencing data idividually by Galaxy, barcodes file (txt) of your samples also need to be uploaded before downstreem analysis.

工具 search tools	1	Up	load buttor	n (multiple	files are	availabl	le)
<u>Upload</u> 16s Sequence anal Stitistics analysis to picrust	ysis tools ools Download from web o	r upload from disk	1				
	Regular Composite	Collection Rule-ba	ed 企 Drop files	here			(
	Type (set all):	Auto-detect	▼ Q Choose FTP file	Genome (set all):	Pause Rese	ecies A 🔻	Close

Required files:

You can find following test data from the "shared library/test data" directory and import these three files there.

	R1.fastq	
_	d	

①sequencing data:

R2.fastq Raw sequence data of

Raw sequence data of R1 and R2.

```
②barcodes file (txt): sample list
```

barcode.txt (this file need to be finished by yourself)

Samp	ple forward	d_barcode	reverse	bacode	forward	_primer_	515F	reverse	primer	806R	Primers	
A1	AGCCAGTCAT	AC GTT	GGTTGGCAI	GT(GCCAGCMGC	CGCGGTAA	GGAC	TACHVGG	GTWTCTAA	ΑT	3	
A2	AGCGAACCTG	TT TTC	CACACGTGG	GT (GCCAGCMGC	CGCGGTAA	GGAC	TACHVGG	GTWTCTAA	ΑT	4	
A3	GTTTGCTCGA	GA AAC	CCAGATGAI	GT(GCCAGCMGC	CGCGGTAA	GGAC	TACHVGG	GTWTCTAA	ΑT	5	
A4	CAAACGCACT	AA GTA	GTGTCAACA	A GT(GCCAGCMGC	CGCGGTAA	GGAC	TACHVGG	GTWTCTA	ΑT	6	
A5	GAACAAAGAG	CG TGG	AGAGGAGAI	GT(GCCAGCMGC	CGCGGTAA	GGAC	CTACHVGG	GTWTCTAR	ΑT	7	
A6	GCTAAGTGAT	GT CGT	ATAAATGCG	GT (GCCAGCMGC	CGCGGTAA	GGAC	TACHVGG	GTWTCTAA	ΑT	8	
B1	AAGGGACAAG	IG AAT	ACAGACCTO	GT (GCCAGCMGC	CGCGGTAA	GGAC	TACHVGG	GTWTCTAA	ΑT	9	
B2	AGTGTCGATT	CG GAC	ICAACCAGI	GT(GCCAGCMGC	CGCGGTAA	GGAC	CTACHVGG	GTWTCTAR	ΑT	10	
В3	CTATTAAGCG	GC GGA	AGAAGTAGO	GT(GCCAGCMGC	CGCGGTAA	GGAC	CTACHVGG	GTWTCTA	ΑT	11	
В4	GAGTCCGTTG	CT ACA	CCGCACAAI	GT(GCCAGCMGC	CGCGGTAA	GGAC	CTACHVGG	GTWTCTAR	ΑT	13	
B5	GATAACTGTA	CG GTC	ГССТСССТТ	GT(GCCAGCMGC	CGCGGTAA	GGAC	TACHVGG	GTWTCTA	ΑT	14	

2. Detect barcodes(FASTQ)

Inputs:

Detect barcodes (FASTQ) This script performs demultiplexing of Fastq sequence data where forward and reverse barcodes are contained in two separate fastq files respectively (Deng lab improved) (Galaxy Version 1.0.0)
Sequence file 1 (FASTQ)
C C 2: R1.fastq
Sequence file 2 (FASTQ)
1 1 3: R2.fastq
Sample list
1: barcode.txt
maximum number of errors in barcode
1.5

Options

Maximum number of errors in barcode: >= 0. 1.5 means allowing one mismatch.

Outputs:

The barcode sequences were trimed in tagged1_xxx.fastq and tagged2_xxx.fastq files. "tagged1_xxx.fastq" is forward direction and "tagged2_xxx.fastq" is reverse direction.

3. Trim Primer(FASTQ)

The forward and reverse primer sequences should be trimmed in the raw sequencing data separately.

Inputs:

Forward

Trim Primer Ren	nove primers at the beginning of sequences (
Sequence file	
C 4 C	6: tagged1_R1.fastq
Primer	
GTGCCAGCMGCC	CGCGGTAA
Allowed mismat	ch
1.5	
Maximum starti	ng position
1	

Reverse

Trim Primer Remo	ove primers at the beginning of sequences
Sequence file	
C 2 C	7: tagged2_R2.fastq
Primer	
GGACTACHVGGGT	WTCTAAT
Allowed mismatc	h
1.5	
Maximum starting	g position
1	

Parameter options:

Primer used:

515F GTGCCAGCMGCCGCGGTAA (R1) 806R GGACTACHVGGGTWTCTAAT (R2)

Modified 515F/806R (Walters W. et al. mSystem. 2015. 1(1):e00009-15) 515MF GTGYCAGCMGCCGCGGTAA (R1)

806MR GGACTACNVGGGTWTCTAAT (R2)

gITS7F GTGARTCATCGARTCTTTG (R1)

ITS4R: TCCTCCGCTTATTGATATGC (R2)

Allowed mismatch: 1.5

Maximum starting position: 1 (according to your primer position in the raw sequences, usually

primers start at 1 position)

Outputs:	
Forward	Reverse
<u>10: TrimPrimer_summ</u>	<u>12: TrimPrimer_summ</u>
<u>ary.txt</u>	<u>ary.txt</u>
<u>9: TrimPrimer_tagged</u>	<u>11: TrimPrimer_tagge</u>
<u>1_R1.fastq.fastq_</u>	<u>d2_R2.fastq.fastq</u>

4. <u>Remove end base (FASTQ) (Optional)</u>

Remove the certain bases for each sequences. It is useful to discard bases with low quality scores.

Inputs:

Remove end base	(FASTQ) Remove some low quality bases at end side for fastq file (Galaxy Version 1.0.0)
fastq file requried	to remove base
C 2 C	11: TrimPrimer_tagged2_R2.fastq.fastq
Remove length	
10	
✓ Execute	

Outputs:

Remove_TrimPrimer_tagged2_R2.fastq.fastq

5. Flash (Combine R1 and R2) (FASTQ)

Inputs:

Forward sequences for sequence file 1

Reverse sequences for sequence file 2

Flash Pair-end joi	ning program for FASTQ (Galaxy Version 1.0.0)	▼ Options
Sequence file 1 (F	ASTQ)	
C 4 C	9: TrimPrimer_tagged1_R1.fastq.fastq	•
Sequence file 2 (F	ASTQ)	
C 4 C	11: TrimPrimer_tagged2_R2.fastq.fastq	•
The minimum req	uired overlap length (bp)	
30		
The maximum ove	erlap length expected in approximately 90% of read pairs(bp)	
250		
The maximum all	owed ratio of the number of mismatches and the overlap length	
0.25		
phredOffset		
33		
phredOffset is the s 33, which correspor Default: 33.	mallest ASCII value of the characters used to represent quality values of bases in fastq files. It should be si nds to the later Illumina platforms and Sanger platforms, or 64, which corresponds to the earlier Illumina pl	at to either atforms.
Average reads ler	ngth	
220		
avg_frag_length		
253		
standard deviatio	n of fragment lengths	
25		
If you do not know fragment length.	standard deviation of the fragment library, you can probably assume that the standard deviation is 10% of	the average
✓ Execute		

The maximum overlap length is usually "250", and the other parameters can be changed when necessary.

The minimum required overlap length: 30 (sequence length for enough overlap)

The maximum overlap length expected in approaximately 90% of read pairs (bp): 250 (250 = 220*2

-253 + 25*2.5)

Average reads length: 220 (based on the length_statistics for sequences after trim primer)

```
Avg_frag_length: 253 (515F-806R); 265 (gITS7F-ITS4R);
```

Standard deviation of fragment length: 25 = avg_frag_length * 10%

Outputs:

20: FlashHist.txt

<u>19: notCombined TrimPrim</u> <u>er tagged2 R2.fastq.fastq</u>

<u>18: notCombined TrimPrim</u> <u>er tagged1 R1.fastq.fastq</u>

17: Combined.fastq

6. Btrim (FASTQ)

Inputs:

Btrim Trimming tool for FASTQ (Galaxy Version 1.0.0)					
Sequence file(FASTQ)					
🗋 🖉 🗀 17: Combined.fastq					
Format					
Sanger					
Average Quality Score					
20					
Minimum Length					
140					
Window Size					
5					

Average Quality Score: 20

Minimum length: 140 (Determined by FastQC results to select maximum sequence length of Q30 or

Q20)

Window Size: 5 (every 5 bases was treated as a windon size to check the quality. If the average score of these 5 bases is < 20, but the sequence length is > 140, then the bases after this 5 bases will be removed and left bases will remain. Otherwise, the whole sequence will be discard.)

Outputs:

22: length distribution.txt

21: Trimmed Combined.fastq

7. Extract FASTA from FASTQ

Transforming FASTQ file (Trimmed_combined.fastq) to FASTA file

Inputs:

Outputs:

23: {Trimmed Combined.fast g}.fasta

8. Trim N (FASTA) (Trimming sequences containing "N")

Trimming sequences containing "N"

Inputs:

Trim N The program delete the sequences contains N or trim them (remove the bases after N) (Galaxy Version
1.0.0)
Fasta file
1 1 1 1 23: {Trimmed_Combined.fastq}.fasta
If the sequence contains N
Delete
'Delete' means to remove the entire sequence; 'Trim' means to remove the bases after N
Trim by length (bp)
200
✓ Execute

Delete: remove the entire sequence once it contained 'N' (more strict)

Trim: remove the bases in a sequence after 'N'

Trim by length (bp): 200 (default; you can change it according to your case)

Outputs:

25: Remove	Ν	sum
<u>mary.txt</u>		
24: Remove	N.	fasta

9. Trim by Sequence Length

Inputs:

Trim by Sequence Length The program trim the sequences based on the length. Only sequences longer than the minimum length and shorter (or equal) than the maximum length are kept (Galaxy Version 1.0.0)
File format
FASTA
FASTA(4 54)
1 1 1 1 24: Remove_N.fasta
Minimum length (bp)
245
Trim_or_delete
Trim sequence base over the maximum length
Maximum length (bp)
260
✓ Execute

Parameter options:

File format: FASTA / FASTQ (select according to your case)

Trim or delete: Trim sequence base over the maximum length (strictly, you can choose delete)

Length range: For 16S (515F/806R) primers, generally 245~260 bp; For ITS (gITS7F~ ITS4R),

generally varies around 265 bp; the length range can be changed according to your specific case.

Outputs:

27: Trim length su mmary.txt

26: Trim length

10. Framebot (optional; only necessary for functional genes)

Inputs:

Parameter options:

References: unaligned_protein.fasta (own database without alignment)

Outputs:

11. Generate OTU table

UPARSE (Recommend; UPARSE for FASTA)

Inputs:

UPARSE for FAST	A Clustering method to generate OTU for FASTA format, without quality	▼ Options
EASTA file with s		
FASTA IIIE WIULS		
C 4 C	26: Trim_length	•
Reference sequer	nce for chimera checking	
C 2 C	29: Galaxy68-[core_set_16s_unaligned.fasta].fasta	•
Trim length		
N/A		
Sequences will all b	be trimmed by this length. Fill 'N/A' if you don't want to trim the sequences.	
Clustering thresh	old	
0.97		
Majority rule, cut	=?	
0		
Example: 1 means	remove all the singlet	

Parameter options:

Reference sequence for chimera checking: find the database in shared library or upload your own database.

Trim length: N/A

Clustering threshold: 97% (similarity of OTU clustering; usually 0.97)

Majority rule, cut=?: 0 (keep all singletons)

Outputs (3 files):

32: UPARSE otu sequence names.txt

31: UPARSE rep seq.fasta

30: UPARSE otu table.txt

UNOISE (Unoise for FASTA to generate ZOTUs)

Inputs:

Parameter options:

The minimum abundance: 8 (default value)

Outputs:

<u>41: Unoise otu seq.fasta</u>

40: Unoise3 otu table.txt

<u>39: Unoise3 seqs summary.fasta</u>

UNOISE (Unoise for FASTA using Vsearch)

This program is mainly for large dataset for OTU clustering, such as greater than 4GB. Similar options as above instructions.

The minimum abundance: 8

Alpha parameter: 2 (not recommended to change)

Threshold for mapping: 0.97 (default value)

Unoise for FASTA	using Vsearch Based on Vsearch (Galaxy Version 2.7.2)	▼ Options
FASTA file with sa	ample ID	
C 4 C	26: Trim_length	-
The minimum abu	indance	
8		
Input sequences wit means remove all th	th lower abundances are discarded. For example, 1 means keep all sequen he singleton. Default value of Unoise3 algorithm is 8.	ices, 2
Alpha parameter		
2		
Default is 2. Genera	Illy, this is not recommended to change.	
Threshold for map	pping	
0.97		
Denoised OTUs also	use a 0.97 identity threshold by default to allow for sequencing and PCR (error. This

Deblur

value varied from 0 to 1.

Inputs:

Deblur A novel sub	-operational-taxonomic-unit (sOTU) approach (Galaxy Version	 Options
1.0.4)		
FASTA files with sa	ample ID	
C 4 C	26: Trim_length	-
Trim length		
240		
Sequence trim length skip trimming, but th	h. All reads shorter than this value will be discarded. A value of -1 can be nis assumes all sequences have an identical length.	specified to
Minimum reads		
10		
Keep only the sequer and minimum value	nces which appear at least min-reads study wide. Zero is to ignore this pa can be set as 1.	rameter
Minimum size		
2		
Keep only sequences	which appear at least min-size times per-sample.	
Positive reference	filtering database	
⊙ Use default datab	pase (Greengene 13_8)	
O Select your own o	database	

Parameter options:

Trim length: 240 (change based on the intructions)

Minimum reads: 10 (default; it depends)

Minimum size: 2 (default; it depends)

Positive reference filtering database: default Greengene 13.8 version

Outputs:

38: Deblur reference-non-hit rep seq

37: Deblur reference-non-hit

<u>36: Deblur sOTU rep seq (reference-hit)</u>

35: Deblur sOTU table (reference-hit)

34: Deblur all seq (include hit and non-hit)

33: Deblur all table (include hit and non-hit)

<u>Uclust</u>

11.5-1 Uchime

Inputs:

U-Chime Dectect chimeras (Galaxy Version USEARCH 5.2.32)	▼ Options
Sequence file	
🗅 🖄 🗀 26: Trim_length	•
The input sequences should include identical sequences	
select	
Reference database	•
Reference sequence file	
법 업 D 29: Galaxy68-[core_set_16s_unaligned.fasta].fasta	•
The reference database should contain trusted sequences that are chimera-free (nucleotid	e sequences)

Parameter options:

Select: de novo / Reference database (in shared library or upload your own database)

Outputs:

43: redundancy map.txt

42: Uchime.fasta

11.5-2 Uclust

Inputs:

uclust Clustering	method to generate OTU, fast (Galaxy Version usearch 5.2.32)	▼ Options
Sort by length?		
Yes		•
Sequence file		
C 2 C	42: Uchime.fasta	•
FASTA file	ion	
Clustering thresh	old	
0.97		

Parameter options:

Clustering threshold: 0.97

Outputs:

45: Uclust clustering.txt

44: Uclust seeds.fasta

11.5-3 Generate OTU Table

Inputs:

Generate OTU tables Generate OTU tables from CD-HIT and output clustering file(s). • Options Combine the identical sequences removed before if applicable. (Galaxy Version 1.0.0)
Sequence File (FASTA)
□ 4 □ 26: Trim_length
used to identify all samples and pick representative sequences
Clustering method
Vclust •
CD-HIT/Uclust
Keep forward and reverse tags (454)
No •
Yes - two columes for two tags; No - one colume
Did you combine forward and reversed sequences (454)
No 🔻
If you did, you need to provide three cluster files to generate the table
Clustering file from CD-HIT/UCLUST
□ 42 □ 45: Uclust_clustering.txt
Redundancy map
1 1 1

Parameter options:

Clustering method: Uclust

Other parameters keep default

Outputs:

<u>49: rep_seq_no_singlet.fasta</u>					
<u>48: rep</u>	48: rep_seq.fasta_				
<u>47: otu</u>	table	without	<u>singlet</u>	t.txt	
<u>46: OTU</u>	table.	<u>txt</u>			
6,127 lin	ies				
格式: txt	; 数据库:	2			
80;	C 111 3				
оти	A1	A2	A3	A4	A5
оти_0	3104	7489	75	15	3490
OTU_1	1	7	0	1	1
OTU_10	105	4	102	113	2
OTU_100	0	0	0	0	0

12. ITSx Extractor (Optional for ITS)

This tool is to identify ITS sequences and extracts the ITS regions..

Input:

ITSx Extractor ITSx Identifies ITS sequences (Galaxy Version 1.1b)
Input Fasta
C 4 C 616: Galaxy8-[ITS_UPARSE_rep_seq.fasta].fasta
Domain E-value Cutoff
1e-05
Domain E-value cutoff a sequence must obtain in the HMMER-based step to be included in the output.
Domain Score Cutoff
0
Domain score cutoff that a sequence must obtain in the HMMER-based step to be included in the output.
Minimum Number of Domains
2
The minimum number of domains (different HMM gene profiles) that must match a sequence or it to be included in the out
(detected as an ITS sequence). Setting the value lower than two will increase the number of false positives, while increasing
two will decrease ITSx detection abilities on fragmentary data.
HMMER Search Type
Search E-value
Search E-value
0.01
The actual E-value cutoff used in the HMMER search. High numbers may slow down the process. Should never be set to a than the Domain E-value Cutoff opion. Cannot be used in combination with Search Score option.
Re-creates the HMM-database before ITSx is run
Yes No
Allow profiles not to be in the expected order on the extracted sequences
Yes No
Check both DNA strands against the database
Yes No
Use HMMER's heuristic filtering
Yes No
Preserve sequence headers instead of printing out ITSx headers
Yes No
Remove ends of ITS sequences if they are outside of the ITS region
Yes No

Options:

Usually not requried to change.

Output:

 \triangleright **ITSx Summary**

```
ITSx run started at Sat Apr 7 11:58:12 2018.
ITSx run started at Sat Apr 7 11:58:1

Number of sequences in input file:

Sequences detected as ITS by ITSx:

On main strand. 2320

On complementary strand: 0

ITS sequences by prelimary origin:

Alveolates: 60

Ameeboora: 50

Bacillariophyta: 39

Brown algae: 0

Bryophytes: 0

Euglencora: 69

Microsporita: 0

Microsporita: 0

Microsporita: 0

Microsporita: 0

Nicrosporita: 0

Raphidophytes: 0

Raphidophytes: 0

Raphidophytes: 0

Raphidophytes: 0

Raphidophytes: 0

Raphidophytes: 1

Tracheophyta: 79

ITSx run finished at Sat Apr 7 12:00:
                                                                                                                                                                                                                                                                                                                2661
                                                                                                                                                                                                                                                            2320
```

ITSx run finished at Sat Apr 7 12:00:56 2018.

\geq Identified Fungi ITS fasta File

```
>OTU_1
AAGGGCACAT NGGCOCCCTIGG TATTICCAGGgggCANGCCTG TITG AGGG TCATITCCTICTCAAACATICT
IGTIttttttCCAAAG ag agGTTICTCTGCGTGCTIGAGG TATAATGCAAGTACGG TCGTITTAGG TITI.
agCGTCTAGGCGAACAATGTTCTTAAAGTTIGACCTCAAATCAGGTAGGAGTACCGCTGAACTTAA
>OTU_2
```

```
ALGCACCT REGGET & deg TATTECEG AG AG CATGCETE TT GAG TATE AT GAAA TE TE AACCAT TAGG
GOG TE TT TAACTTE TE AT AT TE GEGET AAT AAG TT TE GET GEGT AC GACT TE AG AAG TE CEACOCAT TAGG
GOG TE TT TAACTTE TE AT AT TE GEGET AAT AAG TT TE GET GEGT AC GACT TE AG AAG TE CEACOCAT TA AG
A
```

```
>OTU_3
AACGCAACT TGOGCT et et GG TATTOCGG AG AGCA TGOC TG TT TG AG TG TCATGAAA TC TCAACCAT TAGG-
AGCGAGT TTAACTAT TGCTATCTGGOG TAATAAGT TTOGCTGGAATGGTAT TG TGAAGCgcgc TTCTAATO
```

```
≻
   ITSx results associated with other eukaryotes
```

ITSx result summary

The file of <u>ITS_identify.ITS1.fasta</u> is available to download. The file of <u>ITS_identify.ITS2.fasta</u> is available to download. The file of <u>ITS_identify.extraction.results</u> is available to download. The file of <u>ITS_identify.extraction_Alveolates.fasta</u> is available to download.

13. Compare otu table to sequence file (optional)

Useful when the OTU numbers for rep_seq and table file were inconsistent. Compare the otu table file to the sequence file. Only keep the matched sequence or otu name left.

Inputs:

Compare otu table to sequence file Quickly compare the otu table file to the • Options sequence file or reversely. (Galaxy Version 1.0.0)		
fasta file		
C 2 C	31: UPARSE_rep_seq.fasta	•
OTU table		
C 4 C	32: UPARSE_otu_sequence_names.txt	•

Outputs:

```
52: normalized summary.txt
51: normalized UPARSE otu sequence
names.txt
```

```
50: normalized UPARSE rep seq.fasta
```

14. Rarefaction Curve

① Richness rarefaction

Inputs:

Rarefaction Curve	Generate rarefaction curve from OTU table. (Galaxy Version 1.0.0)	▼ Options
OTU table		
C 4 C	30: UPARSE_otu_table.txt	•
Sample list		
C 2 C	Nothing selected	•
Richness Shannor	n,simpson	
Richness rarefaction •		
Steps in rarefaction calculations. Suggested:1000 as default value		
1000		

Parameter options:

Sample list (optional):

• Sample list (optional):

Sample1_name:tag1,tag2,tag3 Sample2_name:tag4,tag5,tag6

A:A1,A2,A3,A4,A5,A6	
B:B1,B2,B3,B4,B5,B6	
C:C1,C2,C3,C4,C5,C6	

Richness rarefaction: 1000 steps

Outputs:

54: chao.txt

53: rarefaction.txt

(2) Shannon and Simpson Rarefaction

Inputs:

Rarefaction Curve	e Generate rarefaction curve from OTU table. (Galaxy Version 1.0.0)	▼ Options
OTU table		
C 4 C	30: UPARSE_otu_table.txt	-
Sample list		
C 4 C	Nothing selected	•
Richness Shannon, simpson		
Shannon and Simp	oson rarefaction	•
Maximum reads 41000 correpon	s in these samples, please fill hundreds or thousands according to your s nding to 1000 steps	teps,e.g.
40000		
Steps in rarefac	tion calculations. Suggested:1000	
100 (slower)		•

Parameter options:

Maximum reads: 40000 (depends on maximum reads of all samples in your OTU table; must be

changed to multiples for selected steps)

Outputs:

58: simpson diversity

57: shannon diversity

56: rarefaction simpson.txt

55: rarefaction shannon.txt

15. <u>RDP Classifier</u>

Inputs:

RDP Classifier Assign 16S rRNA or Fungal LSU sequences to the bacterial and fungal taxonomy (Galaxy Version 1.0.0)	▼ Options	
Sequences to classify: (FASTA)		
1: UPARSE_rep_seq.fasta	•	
gene		
16S rRNA (RDP training set RDP release 11.5)		
conf		
0.5		

Parameter options:

Conf: 0.5 (recommended value)

Gene:

For 16S, RDP, Greengene, SILVA

For fungal ITS, warcup, Unite

For fungal LSU, RDP

For 18S, SILVA

If you want to use your own database to assign taxonomy, it is available now:

gene		
Select your own pro	Select your own provided taxonomy database	
Bacteria/Archaea or Fungi		
Eukaryote (funga	Eukaryote (fungal, protist, etc)	
FASTA file containing a unique name for each sequence		
C 4 C	1645: sh_refs_qiime_ver7_97_s_01.12.2017.fasta	
Text file containing assigned taxonomy for each sequence name		
C 4 D	1646: sh_taxonomy_qiime_ver7_97_s_01.12.2017.txt -	

Notice when you choose own taxonomy database

You should provide two files, fasta file and text file, to assign sequences based on your taxonomy database using RDP classifier. If you want to add an option for your own trained database in this pipeline, please contact Prof. Ye Deng.

· The uploaded FASTA file must have a stable or unique name for each sequence

- >SH009881.07FU_EF634088_reps
- CCGAACTGTCGACACGAGTTGTTGCTGGCCTCTCAAACGGGGGGGCATGTGCACA
- >SH492954.07FU_DQ656654_reps_singleton
- CATGAGCCTTGATCTCGCCGGTTAAGCAGAGGCCTCACGGTCCGCGGGTAATCT
- >SH628622.07FU_LC131409_reps
- ...
- The uploaded txt file must be tab-devided text file and its format should be as same as below, containing two columns, sequence
 name and taxonomy information. Please notice k is for kingdom, p is for phylum, c is for class, o is for order, f is for family, g is for
 genus and s is for species.
- SH009881.07FU_EF634088_reps k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Thelephorales;f_Thelephoraceae;g_Tomentell
- SH492954.07FU_DQ656654_reps_singleton k_Fungi;p_Ascomycota;c_Orbiliomycetes;o_Orbiliales;f_Orbiliaceae;g_Hyalorbili
- SH628622.07FU_LC131409_reps k_Fungi;p_Basidiomycota;c_Dacrymycetes;o_Dacrymycetales;f_Dacrymycetaceae;g_Calocera;

Outputs:

60: ClassifierSummary.txt

59: Classifier of 16srrna.txt

16. <u>Resample OTU table</u>

Inputs:

Resample OTU tab	ble Randomly resample for each tag/sample from OTU table (Galaxy Version 1.0.0)	 Options
OTU table to be re	esampled	
D 40 D	30: UPARSE_otu_table.txt	•
Resample size		
33007		
✓ Execute		

Parameter options:

Resample size: change according to your own OTU table. Usually it is the minimum value of reads

numbers for all samples in the OTU table with singletons. For test data, the resample size is 33007.

C3 À4 Ć C5 C1 B2 A5 **B**3 A3 B5 B1 A2 C6 Β4 C2 A1 52348 44169 45372 56772 33065 40556 35288 64117 33007 51750 38349 41994 56878 40327 44666 B6 C4 A6 44579 39361 44393

For soil samples, 16S analysis > 30000; ITS analysis > 10000

Outputs:

61: resample UPARSE otu table.txt

B. Statistics analysis

All statistics analysis methods were based on OTU table after resample process (resampled OTU table).

1. Diversity methods

1.1 α-diversity (Calculate taxonomy alpha diversity and evenness)

Inputs:

Parameter options:

Plot figure using ggplot2: No / Yes (provide a group file, see the example below)

A1	Α
A2	А
A3	Α
A4	Α
A5	Α
A6	Α
B1	В
B2	В
В3	В
В4	В
В5	В
B6	В
-	

Outputs:

<u>1.2 Hill number</u>

或者根据 Chao 的最新文章计算 Hill number:

Hill number estimation (version 1.0.0)	~
OTU table for Hill number calculation: 42 432: FunGuild result for resample_otu_table_soil_ITS_6_group.txt	
Execute	
What it does	

The program calculates the Hill number based on abundance data of OTU table.

Hill numbers include the three widely used species diversity measures as special cases: Species richness(q=0), Shannon diversity (q=1), and Simpson diversity (q=2).

Hill numbers

q=0: Hill number is simply species richness, which counts species equally without regard to their relative abundances.

q=1: q tends to 1 is the exponential of the Shannon index, referred to as Shannon diversity.

q=2: Simpson diversity is the inverse of Simpson concentration index.

<u>1.3 β-diversity</u>

Inputs:

Calculate distance indexes Calculate distance indexes(Jaccard,Bray,Horn,Euclidean) (Galaxy Version 1.0.0)
File1(tabular file)
1 1: resample_UPARSE_otu_table.txt
data type
quantitative data
Recommend:quantitative data
V Everyte

Parameter options:

Quantitative type is corresponding to the abundance type of the input file. The distance calculation is based on abundance data. (Recommend)

Absence/Presence type is corresponding to the 1/0 data type. The input file will be standardized to 0/1 scale.

Outputs:

<u>69: Euclidean</u>

68: Horn-Moristita

67: Bray-Curtis

66: Jaccard

2. Community structure

2.1 <u>PCA</u>

Inputs:

Principal Component Analysis Principal Component Analysis (Galaxy Version 1.0.0)		
File_in(tabular file)		
1 1: resample_UPARSE_otu_table.txt		
whether you have different groups of sample (for ggplot2)		
No		

Outputs:

71: pca plot

70: pca result

2.2 <u>DCA</u>

Inputs:

Detrended Correspondence Analysis Detrended Correspondence Analysis (Galaxy Version 1.0.0)		
File_in(tabular file)		
6 2) 🗅	61: resample_UPARSE_otu_table.txt
whether you have different groups of sample (for ggplot2)		
No		

Outputs:

73: dca plot

72: dca result

2.3 <u>NMDS</u>

Inputs:

Non-metric multidimensional scaling. (NMDS) Non-metric multidimensional scaling (Galaxy Version 1.0.0)					
File_in(tabular file	e)				
C 4 C	61: resample_UPARSE_otu_table.txt				
distance_type					
Jaccard distance					
dimension_type					
Two dimensions					
whether you have	different groups of sample(for ggplot2)				
No					

Parameter options:

Distance type: jaccard / bray

Dimentison type: 2D / 3D

Plot using ggplot2: provide a group file if you have

Outputs:

75: NMDS plot

74: NMDS result

2.4 PD&PCoA

1) PyNAST alignment

Inputs:

PyNAST Alignmen 1.0.0)	t Use PyNAST to align sequences. Pre-aligned reference sequences are required
Sequence to be a	ligned (FASTA)
C 4 C	31: UPARSE_rep_seq.fasta
Aligned reference	sequences
16S - GreenGene	
Minimum length t	o include in the alignment
200	

Parameter options:

Aligned reference sequences: 16S-GreenGene / own aligned database (from shared library or

upload)

Outputs:

76: PyNAST aligned

2) FastTree

Inputs:

3) UniFrac

Inputs:

Unifrac A tool for	comparing microbial community diversity in a phylogenetic context (Galaxy Version 1.0.0)	▼ Options
OTU table		
C 4 C	61: resample_UPARSE_otu_table.txt	•
Tree file		
C 4 C	77: FastTree.nwk	•

Outputs:

Weighted PcoA and unweighted PcoA are the results of PCOA.

2.5 <u>Relative abundance</u>

Inputs:

Taxonomy summary and relative abundance plot Taxonomy summary for each sample at selected similarity voptio cutoff (Galaxy Version 1.0.0)
Resample OTU table
C 4 C 61: resample_UPARSE_otu_table.txt
Sample list
C 4 D Nothing selected
Sample list for all samples grouping
OTU classification result from rdp classifier
🖸 🕫 🗁 59: Classifier of 16srma.txt
Count species richness or count species abundance
O Species richness
⊙ Species abundance
Summary result type for each sample
O Numbers
⊙ Percentage
Select which level to calculate result
#4:Class
Do not select first column, #1:ID.
No. of species showing in the plot
0
0 means all species would be shown in the relative abundance plot
✓ Execute

Parameter options:

Count species richness or count species abundance: richness / abundance

Result type for each sample: numbers / percentage

Taxonomy level: Domain, Phylum, Class, Order, Family, Genus, Species (this will shown if you put

OTU classification file in)

No. of species showing in the plot: 0 is to show all species.

Outputs:

83: Relative abundance at 3 level for abundance count

82: Taxonomy summary at 3 level for abundance count

3. Comparison analysis

3.1 Response ratio calculation

Inputs:

Response Ratio Calculation (Galaxy Version 1.0.0)	▼ Options
OTU table file	
4 C 61: resample_UPARSE_otu_table.txt	-
Treatments:	
Select/Unselect all	
x #2:C3 x #4:C5 x #5:C1 x #14:C6 x #16:C2	
Do not select #1:ID.	
Controls:	
Select/Unselect all	
x #3:A4 x #7:A5 x #9:A3 x #12:A2 x #13:A1 x #19:A6	
Do not select #1:ID	
Blanks treatment:	
$oldsymbol{O}$ considered as missing values (excluded from the analysis)	
○ considered as 0 (included)	
O fill 0 if paired with a valid value, then calculate avg and SD on whole set	
\bigcirc fill 0 if paired with a valid value, get average on each sample and then calculate avg and SD of all samples	
Confidence interval:]
095	
099	
Draw significant genes in the plot only	
Yes No	
✓ Execute	

Treatments / Controls: select specific column in the OTU table file

Confidence interval: 90 / 95 / 99

Blanks treatment: considered as missing values

Draw significant genes in the plot only: No (depends)

Outputs:

91: Response ratio result

90: Response ratio plot

<u>3.2 Paired and unpaired t test</u>

Inputs:

Paired and unpaire	ed t test Paired or unpaired t test (Galaxy Version 1.0.0)	 Options
OTU/Gene table(t	abular file)/Data for t test with replicates	
C 4 C	61: resample_UPARSE_otu_table.txt	•
Group file to sepa	rate the samples into two groups	
C 4 C	86: Treatment file for t test.txt	•
Please follow the ex	ample below for paired and unpaired t test	
Paired or Unpaire	đ	
O Unpaired t test		
○ Paired t test		
A character string	specifying the alternative hypothesis	
⊙ Two sided (defau	ilt)	
⊖ Greater		
Oless		
Taxonomic file/Ca	tegory file or not	
O No		
() Yes		
Please pay attention	to the file format.	
✓ Execute		

Group files for unpaired t test and paired t test:

Samples	Group	Pairs	Group1	Group2
Sample1	group1	Pair1	sample1	sample9
Sample2	group1	Pair2	sample2	sample10
Sample3	group1	Pair3	sample3	sample11
Sample4	group1	Pair4	sample4	sample12
Sample5	group2	Pair5	sample5	sample13
Sample6	group2	Pair6	sample6	sample14
Sample7	group2	Pair7	sample7	sample15
Sample8	group2	Pair8	sample8	sample16

Paired or unpaired: paired t test / unpaired t test

Taxonomic file/category file: No (default) / Yes (provide another taxonomy file and select certain

column)

Outputs:

87: Paired or Unpaired t test result

Paired or unpaired t test report

T test for each data

Origin	df	t	signif(p)		
OTU_11	4.9398	0.9047	0.4075		
OTU_5	4.8699	0.9726	0.3765		
OTU_1	4.6596	1.3029	0.2532		
OTU_1041	6.5780	-0.0119	0.9908		

3.3 Dissimilarity (MRPP, adonis, anosim)

Using resample_otu_table and group_file to calculate the dissimilarity based on three different

methods, MRPP, ANOSIM and PERMANOVA.

Inputs:

Calculate dissimilarity Calculate dissimilarity using MRPP,ANOSIM,PERMANOVA (Galaxy Version 1.0.0)					
File in(resampled O	TU table)				
C 4 C 6	1: resample_UPARSE_otu_table.txt				
Sample list(tabular	file)				
C 4 C 63	2: Treatment file for dissimilarity.txt				
Distance method					
⊙ Bray-Curtis distanc	ie				
⊖ Jaccard distance					
How many groups ty	ypes have you uploaded				
1					
Calculate the dissim	ilarity of different taxonomy group				
No					

Parameter options:

Distance method: Bray-Curtis distance / Jaccard distance

Groups: 1 / 2 (Please select according to your sample list)

Calculate the dissimilarity of different taxonomy group: No (default) / Yes (Provide another taxonmy tabular file for each OTU)

Sample list for 1 group and 2 group:

A1	Α
A2	Α
A3	Α
A4	Α
A5	A
A0 B1	B
B2	В
B3	в
B4	В
B5	в
B6	В
C1	С
C2	C
C3	С
C4	C
C5	C
60	C

You can upload either 1 or 2 types of grouping approaches in the grouping file and choose the corresponding number "1" or "2" to define the calculation result.

Outputs:

<u>92: dissimilarity result of bray</u>													
Methods	Whole dataset												
MRPP.delta	0.3457												
MRPP.P	0.001	MDDD	•	P	6								
ANOSIM.r	0.8069	WIRPP	A	В	Ľ	ANOSIM	A	В	C	PERMANOVA	Α	В	С
ANOSIM.P	0.001	Α	0	0.006	0.005	A	0	0.004	0.004	Α	0	0.005	0.001
PERMANOVA.F	11.1642	В	0.4243	0	0.001	В	0.5055	0	0.003	В	4.2306	0	0.004
PERMANOVA.P	0.001	C	0.3123	0.3006	0	С	0.8240	0.9814	0	с	15.7546	18.2536	0

Attention: The values of upper triangular matrices are the significance value (p-value). The values of lower triangular matrices for MRPP, ANOSIM and PERMANOVA are delta, R value and F-value, respectively.

The dissimilarity test for different taxonomy profiles are also available in this analysis tool. The annotation file is the classifier file related to the resample_otu_table you have used above. The result of this annotation part might look like this:

For each taxonomy category

	F.model	P-value	R2
Acidimicrobiales	5.7781	0.001	0.2007
Actinomycetales	5.2298	0.001	0.1701
Alteromonadales	6.9174	0.001	0.2201
Anaerolineales	5.0798	0.001	0.1661
Bacillales	2.1603	0.03	0.0841
Bacteroidales	2.1191	0.018	0.0767
Bdellovibrionales	3.0417	0.007	0.1104
Burkholderiales	5.4732	0.001	0.1767
Caldilineales	11.6734	0.001	0.3140
Campylobacterales	2 8721	0.002	0 1754

4. Environmental associations

4.1 Correlation test

Inputs:

Community data/Data matrix (tabular separated file)
C 2 61: resample_UPARSE_otu_table.txt
Comparison way:
O Genes vs Environment data
O Among genes/factors
O Among samples
The option of among_genes is not recommended for large genes/OTUs.
Environmental variables(tabular file)
Image: Point of the second
Correlation method:
⊙ Pearson Correlation
O Spearman's ranked correlation
O Kendall's ranked correlation
Standardization method:
⊙ standardize environmental data only (scale each factor to zero mean and unit variance)
O standardize genes and environmental data (scale each factor to zero mean and unit variance)
O divide by maximum (both genes and env)
O divide by maximum and multiply by the number of non-zero items (both genes and env)
O standardize values into range 01 (both genes and env)
If you only have one data file, please neglect the clues for environmental data.
Missing values in Genes/OTUs
⊙ fill with 0 (before standardization)
O fill with 0 (after standardization)
This option is only available for data matrix file, not for environmental data.
Adjust P-values for multiple comparisons
© None
 Bonferroni correction (P-values are multiplied by the number of comparisons)
 Holm (1979) A simple sequentially rejective multiple test procedure
 Hochberg (1988) A sharper Bonferroni procedure for multiple tests of significance
 Hommel (1988) A stagewise rejective multiple test procedure based on a modified Bonferroni test
O False discovery rate (1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing)
O Benjamini and Yekutieli (2001) The control of the false discovery rate in multiple testing under dependency

Parameter options:

Comparison way: Genes vs Environment data (provide a environmental data) / Among genes

(factors) / Among samples

Please attention the file format:

Factors	Sample1	Sample2	 SampleN	Sample	factor Name1	factor Name2	factor Name3	facto	orN
factor1	data11	data12	 data1N	Sample1	data11	data12	data13		data1N
factor2	data21	data22	 data2N	Sample2	data21	data22	data23		data2N
factor3	data31	data32	 data3N	Sample3	data31	data32	data33		data3N

Correlation method: Pearson / Spearman / Kendell

Standardization method: default selection (change if necessary)

Missing value: fill with zero (before; change if necessary)

Ajust P-value for multiple comparisons: None (change if necessary)

Outputs:

94: pearson correlation coefficient and significance result

C3	A4	C5	C1	B2	A5	B3
C3	1(0)	0.291(1	.41e-27)	0.991(0))	0.
A4	0.291(1	.41e-27)	1(0)	0.327(1	.06e-34)	0.
99(2.87	e-131)					

correlation coefficient (*P* value)

4.2 Multivariate Regression Tree (MRT)

Inputs:

Multivariate Regression Tree MRT analysis (Galaxy Version 1.0.0)	ns
OTU table(tabular file)/Community data	
1 1: resample_UPARSE_otu_table.txt	•
Environmental variables(tabular file)	
1 1 93: Env file for test samples.txt	•
Selected factors in MRT analysis:	
Select/Unselect all	
x #2:pH x #3:H2 x #4:Ce x #5:H2Rec x #6:EneRec x #7:SubRec	
Do not select first column #1:	_
Splitting times:	
${old O}$ Determined by the best tree from cross-validation	
○ Give the best tree within one SE of the overall best (high confidence)	
○ Split to specific groups	
Dissimilarity measures before splitting:	
O Do not calculate distance before splitting	
○ Euclidean distance	
O Bray-Cutis distance	
🔿 manhattan distance	

Parameter options:

Select factors in MRT analysis: select what you need for the model

Splitting times: Determined by the best tree from cross-validation (recommend)

Dissimilarity measures before splitting: Do not calculate distance (change it if errors happened)

Outputs:

95: MRT result

4.3 BioEnv Analysis

Inputs:

BioEnv Analysis B Dissimilarity (Gal	est Subset of Environmental Variables with Maximum (Rank) Correlation with Community
OTU table(tabula	r file)/Community data
C 4 C	61: resample_UPARSE_otu_table.txt
Environmental va	riables(tabular file)
C 4 C	93: Env file for test samples.txt
Dissimilarity inde	x:
💿 euclidean	
Obray	
Metric used for di	istances of environmental distances:
⊙ euclidean	
🔿 mahalanobis	
⊖ manhattan	
⊖ gower	

Dissimilarity index: euclidean / bray

Metric used for distance of environmental distances: euclidean / mahalanobis / manhattan / gower Outputs:

		size	correlation
	Ce	1	0.0568
	Ce RT	2	0.0492
07: BioEnv rocult	Ce EneRec RT	3	0.0196
37. DIOEITV TESUIC	H2 Ce EneRec RT	4	0.0376

<u>4.4 CCA</u>

Inputs:

Canonical Corresp	pondence Analysis Canonical Correspondence Analysis (Galaxy Version 1.0.0)	▼ Options
File_in(tabular fi	le)	
C 4 C	61: resample_UPARSE_otu_table.txt	•
Env_file(tabular	file)	
C 4 D	93: Env file for test samples.txt	•
✓ Execute		

Outputs:

101: cca plot

<u>100: individual anova test F and</u> <u>p values</u>

99: inflation factors

98: cca result

4.5 Mantel Test

Input:

For mantel and partial mantel test:

Mantel and partial mantel test Default or user defined calculation (Galaxy Version 1.0.0)	▼ Options
File_in (tabular file)	
🗅 🖗 🗀 61: resample_UPARSE_otu_table.txt	•
Resample OTU table or functional gene table	
Env_file (environmental factors in tabular format)	
4 C 93: Env file for test samples.txt	•
Include geographic information with latitude and longitude	
Not contain latitude and longitude	•
calculate the partial mantel test according to your selection (User defined)	
Default Calculation	•
✓ Execute	

For user-defined partial mantel test:

Mantel and partial mantel test Default or user defined calculation (Galaxy Version 1.0.0)	▼ Options
File_in (tabular file)	
1 1 <td>•</td>	•
Resample OTU table or functional gene table	
Env_file (environmental factors in tabular format)	
1 1 1 1 93: Env file for test samples.txt	•
Include geographic information with latitude and longitude	
Not contain latitude and longitude	-
calculate the partial mantel test according to your selection (User defined)	
User defined for partial mantel test	-
Included environmental factors	
Select/Unselect all	
Please use CTRL to select multiple factors. Do not select #1:ID.	
Excluded environmental factors	
Select/Unselect all	
x #3:H2 x #4:Ce x #5:H2Rec x #6:EneRec x #7:SubRec x #8:RT	
Please use CTRL to select multiple factors. Do not select #1:ID	

Output:

<u>102: mantel test and partial mant</u> <u>el test report</u>

5. <u>Plotting figures</u>

5.1 Venn Diagrams

Venn Diagrams Draw venn diagrams based on OTU table (Galaxy Version 1.0.0)	▼ Options
OTU table file	
1 1 1 61: resample_UPARSE_otu_table.txt	•
Sample list (Optional)	
Image: Constraint of the selected	•
2nd sequence file	
4 categories	•
A vector of numbers to indicate colors from 1 to 100	
20,1,50,70,90	
The numbers should be seperated by comma and this value must correspond to selected categories.	
✓ Execute	

Input Format

• OTU table:

The OTU table should contain one head row starts with "OTU" and then the tag/sample/treatment list.

Sample list (optional):

```
Sample1_name:tag1,tag2,tag3
Sample2_name:tag4,tag5,tag6
Sample3_name:tag7,tag8,tag9
```

5.2 Heatmap

Data with headers and row names for heatmap plot Image: Constraint of the standard standa
Image: Standardization method before plotting heatmap:
Standardization method before plotting heatmap:
Nothing to do with the data
O standardize the data (scale each factor to zero mean and unit variance)
O divide by maximum
O divide by maximum and multiply by the number of non-zero items
O standardize values into range 01
The values should be centered and scaled in either the row direction or the column direction, or none.
O Row direction
○ Column direction
() None
If rows should be clustered or hclust object
© TRUE
O FALSE
If columns should be clustered or hclust object
© TRUE
O FALSE
Distance method if selected clusters
⊙ The complete linkage method finds similar clusters.
O Average (UPGMA)
O Mcquitty (WPGMA)
O Median (WPGMC)
O Centroid (UPGMC)

5.3 Hierarchical cluster

Hierarchical Cluster Hierarchical clustering analysis with heatmap (Galaxy Version 1.0.0)	ons
Community data/Data matrix (tabular separated file)	
1 1: resample_UPARSE_otu_table.txt	•
Data preparation (on each sample):	
O None	
O Standardization (scale to zero mean and unit variance)	
○ Taking logarithm (log(x)+1; log base is 2)	
⊖ Making sum of squares equal to one	
Distance Method:	
• Pearson Correlation	
O Bray-Curtis distance	
O Euclidean distance	
⊖ Maximum	
Clustering Algorithm:	
O Average	
○ Complete	
○ Median	
○ Centroid	
Figure option:	
⊙ Simple hierarchy tree on samples	
O Heatmap with hierarchy tree on samples only	
O Heatmap with hierarchy tree on both genes and samples (Not recommend for more than 500 genes or OTUs)	

C. Ecological process analysis

1. <u>Null model test</u>

If you are interested in this analysis, please further read: Zhou JZ, Deng Y, Zhang P, Xue K, Liang YT, Van Nostrand JD, et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci. 2014;111:E836-E45.

Input:

Null model test Effect size et al. (Galaxy Version 1.0.0) Options Options<!--</th-->
OTU table file
1258: Uparse_OTU_table_resample.txt
Group file (treatment list)
□ 4 □ 1259: Group_sample_null_model.txt •
Distance method:
O Jaccard distance
O Bray-Curtis distance
Data transformation:
⊙ No transformation
○ Transfer to the presence/absence data
O Transfer to the round integers
Null model:
○ Chase 2010 EcoSim null model (Randomize community data matrix with the independent swap algorithm (Gotelli 2000) maintaining both row and column sums constant)
• Chase 2011 Ecosphere null model (keep alpha and gamma diversity of the whole/group data constant)
O Randomize community data matrix abundances within species (only keep column sum constant)
Keep gamma diversity in:
⊙ Total dataset
⊖ Group by group
✓ Execute

Output:

ANOVA test for null model

Null model result

2. Null model test on Permdisp

If you are interested in this analysis, please further read: Zhou JZ, Deng Y, Zhang P, Xue K, Liang YT, Van Nostrand JD, et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci. 2014;111:E836-E45.

Input:

Null model test on	Permdisp (Galaxy Version 1.0.0)	 Options
OTU table file		
C 4 C	1258: Uparse_OTU_table_resample.txt	-
Group file (treatm	ent list)	
C 2 C	1259: Group_sample_null_model.txt	-
Distance method:		
⊙ Jaccard distance	(presence/absence)	
O Bray-Cutis distan	ce (abundance)	
O Sorensen distanc	e (presence/absence)	
Null model:		
O Chase 2010 Ecos	im null model (Randomize community data matrix with the independent swap algorithm (Gotelli 2000) maintainin	g both
row and column su	ns constant)	
O Chase 2011 Ecos	phere hull model (keep alpha and gamma diversity of the whole/group data constant)	
O Randomize comn	nunity data matrix abundances within species (only keep column sum constant)	
Keep gamma diver	sity in:	
⊙ Total dataset		

Output:

Null model test on Permdisp

3. Beta NTI calculation

Input:

Beta NTI calculation bNTI (Galaxy Version 1.0.0)	▼ Options
OTU table file	
1285: Uparse_OTU_table_resample.txt	•
Phylogenetic tree file	
1286: Uparse_FastTree.nwk	•
Weighted:	
○ Weighted	
⊙ Unweighted	J
Randomization	
1000	

Output:

bNTI result

4. <u>RC distance</u>

Input:

RC distance Raup-Crick based on taxonomic dissimilarity index (Galaxy Version 1.0.0)	 Options
OTU table file	
1285: Uparse_OTU_table_resample.txt	-
Distance method:	
O Jaccard distance	
O Bray-Curtis distance	
Community matrix type	
O Default is to use abundance data	
O Transfer to the presence/absence data	
Use Chases's method (Chase 2011)	
O Abundance weighted	
O Based on Jaccard dissimilarity (not abundance weighted)	
Randomization	
1000	
✓ Execute	

Output:

95: Raup-Crick result

5. <u>Summary ecological process</u>

Input:

Summary ecological process Based on bNTI and RC distance (Galaxy Version 1.0.0)	▼ Options
bNTI result	
1291: bNTI result	-
Raup-Crick result	
1295: Raup-Crick result	•
✓ Execute	

Output:

25: Ecological process summary

D. Functional profile prediction approaches

The introductions of this section will only cover some fundamental operations in our analysis pipeline. The results including the inference and plotting figures should be referred to the original literatures for each method.

The functional profile predictions are mainly divided into two parts according to their amplicon sequences: 16S-based and ITS-based analysis. The functional profiles prediction tools for 16S-based sequences mainly included PICRUSt, Tax4Fun, FAPROTAX and BugBase. For ITS-based sequences, there was only FunGuild method in this analysis pipeline.

1. PICRUSt

Please see this paper when you have some questions: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Langille, M. G.I.; Zaneveld, J.; Caporaso, J. G.; McDonald, D.; Knights, D.; a Reyes, J.; Clemente, J. C.; Burkepile, D. E.; Vega Thurber, R. L.; Knight, R.; Beiko, R. G.; and Huttenhower, C. Nature Biotechnology, 1-10. 8 2013.

1.1 Pick up ref OTU

Input:

pick up ref OTU G	enerate OTU table based on GreenGene references (Galaxy Version 1.0.0)	▼ Options
Sequences to ger	erate OTUs: (FASTA)	
C 4 D	108: Trim_length	•
✓ Execute		

Output:

OTUs GG ref.biom

1.2 Normalize by Copy Number

Input:

Output:

1694: Normalize by Copy Number on data 1693

1,129 lines 格式: **biom**, 数据库: <u>?</u>

<u>1.3 Predict Metagenome</u>

Input:

Predict Metagenome (Galaxy Version 1.1.1)	▼ Options			
Input file				
C 4 D 1694: Normalize by Copy Number on data 1693	•			
GreenGenes Version (used to generate your OTU table)				
GG 13.5	•			
Type of functional predictions				
KEGG Orthologs	•			
✓ Execute				

Output:

1696: Predict Metagenome on data 1694				
30 lines				
格式: txt, 数据库: ?				
🖹 🕄 💭 ?				
#Sample Metric Value				
A2 Weighted NSTI 0.04519505782896097				
6 Weighted NSTI 0.1693524444199479				
4 Weighted NSTI 0.16395798594477903				
2 Weighted NSTI 0.1492311122685514				
1695: Predict Metagenome on data 1694				
3,481 lines 格式: biom , 数据库: <u>?</u>				

<u>1.4 Categorize by Function</u>

Input:

Categorize by Function (Galaxy Version 1.1.1)	▼ Options
Input file	
🗅 🖄 🗅 1695: Predict Metagenome on data 1694	•
Pathway Hierarchy Level	
3	
Metadata category that describes hierarchy (NOTE: RFAM categories cannot be collapsed).	
KEGG Pathways	•
✓ Execute	

Output:

1697: Categorize by Function on data 1695

Convert Biom to Tabular

Input:

Convert Biom to	Tabular Convert Biom file to Tabular file (Galaxy Version 1.0.0)	▼ Options
Biom file		
B 48 D	1697: Categorize by Function on data 1695	•
✓ Execute		

Output:

<u>1698: Tabular file for Categorize by Function on d</u> <u>ata 1695</u>					
328 lines					
格式: txt , 数据库:	2				
₿02ш?	2				
# Constructed f	rom biom	file			
#OTU ID A2	6	4	2	3	5
1,1,1-Trichloro	-2,2-bis	(4-chlor	ophenyl)	ethane	(DDT)

2. Tax4Fun

2.1 Preparation for Tax4Fun

Input:

Preparation for Tax4Fun Generate taxonomy file for Tax4Fun (Galaxy Version 1.0.0)	▼ Options			
Resample OTU table				
1 1 1 1 61: resample_UPARSE_otu_table.txt	•			
OTU classification result				
103: Classifier of silva16s.txt	•			
Recommend: The taxonomy result based on SILVA database in rdp classifier				
✓ Execute				

Output:

➢ Import file for Tax4Fun

2.2 <u>Tax4Fun</u>

This tool is to predict functional profiles from metagenomic 16S rRNA data using Tax4Fun.

Input:

Tax4Fun Generate Tax4Fun results based on taxonomy information (Galaxy Version 1.0.0)	▼ Options
Tax4Fun input file containing OTU and taxonomy information	
105: Import file for Tax4Fun	•
Functional profile approach	
• Functional capabilities of microbial communities	
O Metabolic capabilities according to MoP aproach	
Method for pre-computing the functional reference profiles	
O UProC	
O PAUDA	
Reads length for reference profiles	
Based on 100 bp reads	•
Normalize by the 16S rRNA gene copy number	
⊙ Yes	
⊖ No	
✓ Execute	

Output:

➢ Tax4Fun results

> FTU (fraction of taxonomic units unexplained)

3. FAPROTAX

This is FAPROTAX (Functional Annotation of Prokaryotic Taxa), a database that maps prokaryotic clades (e.g. genera, species or subspecies) to established metabolic or other ecologically relevant functions based on the current literature. FAPROTAX includes software for converting taxonomic microbial community profiles (e.g. in the form of an OTU table) into putative functional profiles, based on taxa identified in a sample. The web site is <u>http://www.zoology.ubc.ca/louca/FAPROTAX/</u>. Please cite: Louca, S. and Parfrey, L. W. and Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. In Science, 353 (6305), pp. 1272-1277. [doi:10.1126/science.aaf4507]

Input:

Functional Annota Version 1.0.0)	tion of Prokaryotic Taxa Functional annotation based on a database of prokaryotic clades (Galaxy • Options
Resample OTU tab	le
D 40 D	61: resample_UPARSE_otu_table.txt
OTU taxonomy inf	ormation from rdp classifier
D 40 D	59: Classifier of 16srma.txt 🔹
Normalization app	roaches
 Normalize before Normalize after of Normalize before none 	e collapsing collapsing e collapsing excluding unassigned groups
How to normalize th	e table (before_collapsing normalizes the input table prior to processing, after_collapsing normalizes the output table). n name definition
words	• name connector
Omit unrepresente	ed groups
Yes	•
partition each gro	up by scores in report
0,0.1,0.5	
The score of an entr Please use comma(,	y is its total number of hits across all data columns, divided by the total number of hits across all entries and data columns.) to separate the scores.
✓ Execute	

Output:

111: Sub-tables for each funtional group.zip110: Functional group overlaps (Jaccard)109: Matched functional definition108: Group-record associations107: Report of FAPROTAX106: FAPROTAX result for resample UPARSE otu table.txt

4. BugBase

4.1 Pick up ref OTU

Input:

pick up ref OTU G	enerate OTU table based on GreenGene references (Galaxy Version 1.0.0)	▼ Options
Sequences to ger	nerate OTUs: (FASTA)	
C 4 C	26: Trim_length	•
✓ Execute		

Output:

112: OTUs GG ref.biom

4.2 **BugBase Analysis**

Input:

BugBase Analysis Determine high-level phenotypes present in microbiome samples (Galaxy Version 0.1.0)
OTU table (Biom format)
🗋 🙆 🗀 112: OTUs_GG_ref.biom 🔹
Picked OTU table against GreenGene database
Use coefficient of variance instead of variance to determine thresholds
Yes No
Centered Log-Ratio Transformation Data
Yes No
Instead of converting to relative abundance, you can centered log-ratio transform the data. This helps prevent issues with the compositionality
of sequencing data.
Specific Thresholds
NA
The threshold must be a float between 0 and 1. Default (left NA), BugBase will use the threshold with the highest variance in your data.
Taxa level to plot otu contributions
2
Default is 2 (phylum), others should be within the list, 1,2,3,4,5,6,7.
Use KEGG modules?
Not use KEGG modules -
Proceed with mapping file or without mapping file
Without mapping file
✓ Execute

Output:

116: Threshold used in OTUs GG ref.biom.zip

115: Predicted phenotypes for OTUs GG ref.bio m.zip

114: OTU contributions for OTUs GG ref.biom.zip

113: Normalized otu table for OTUs GG ref.biom

If you have a mappling file, you can proceed with mapping file:

Mapping file:

- · Be a tab-delimited text file
- · Have sample IDs in the first column
- · Have column headers in the first row
- · Have #SampleID as the first header
- · Contain only letters, numbers, underscores and hyphens
- · Not contain spaces, commas or quotes
- · Never contain confidential information

-	#SampleID	Group	Location	Details
-	Sample1	Α	Lab 1	PCR_water_sample_1
-	Sample2	Α	Lab 2	PCR_water_sample_2
-	Sample3	В	Lab 1	<pre>PCR_soil_sample_1</pre>
-	Sample4	В	Lab 2	PCR_soil_sample_2

5. FunGuild

Input:

Output:

Funguild result for "resample_otu_table_soil_ITS.txt"

OTUID	HGT	HZT	QGT	QZT	ZGT	ZZT	taxonomy	Taxon	Taxon Leve	Trophic M	Guild	Growth M	Trait	Confidenc	Notes	Citation/So	ource		
OTU_1	8114	997	1377	8273	3336	16274	Fungi;Asco	Aleuria	13	Saprotrop	Undefined	NULL	NULL	Probable	Probable	NULL	Tedersoo L	, et al. 2014	I. Si
OTU_2	5262	3749	6208	8525	9986	3052	Fungi;Asco	Didymella	13	Pathotrop	Plant Path	NULL	NULL	Probable	Probable	NULL	Tedersoo L	, et al. 2014	I. Si
OTU_5	4674	1909	5033	7469	9330	6523	Fungi;Zygg	Mortierella	13	Saprotrop	Undefined	NULL	NULL	Probable	Probable	NULL	Tedersoo L	, et al. 2014	I. Si
OTU_4	2844	11521	79	3510	451	543	Fungi;Zygo	Mortierella	13	Saprotrop	Undefined	NULL	NULL	Probable	Probable	NULL	Tedersoo L	, et al. 2014	I. Si
OTU_3	3150	3950	184	6140	227	886	Fungi;Zygo	Mucor	13	Saprotrop	Undefined	NULL	NULL	Probable	Probable	NULL	Tedersoo L	, et al. 2014	I. Si
OTU_8	1800	682	2287	594	3682	1014	Fungi;Asco	-	-	-	-	-	-	-	Unassigne	-			
OTU_6	39	6	118	77	5702	4076	Fungi;Asco	Saccharon	7	Saprotrop	Undefined	Yeast	NULL	Possible	Possible	NULL	Sterkenbur	g E, et al. 2	015
OTU_7	699	4754	42	3744	228	168	Fungi;Asco	Debaryom	20	Saprotrop	Undefined	Yeast	NULL	Highly Pro	Highly Pro	NULL	Kurtzman (P, et al. (ec	ls.)
OTU_9	633	6620	154	1192	556	230	Fungi;Asco	Alternaria	20	Pathotrop	Endophyte	NULL	NULL	Possible	Possible	Host - Sola	Costa IPM	V, et al. 201	2.1
OTU_13	2724	729	1934	11	. 786	1232	Fungi;Chyt	Monoblep	13	Saprotrop	Undefined	NULL	NULL	Probable	Probable	NULL	Tedersoo L	, et al. 2014	I. Si
OTU_11	888	1220	549	687	2486	1056	Fungi;Basio	Rhodotoru	13	Pathotrop	Animal Sy	r NULL	NULL	Probable	Probable	Opportuni	http://www	.cdc.gov	
OTU_10	367	174	4862	554	638	31	Fungi;Asco	Saccharon	7	Saprotrop	Undefined	Yeast	NULL	Possible	Possible	NULL	Sterkenbur	g E, et al. 2	015
OTU_3343	114	196	1634	4462	40	10	Fungi;Zygo	Mortierella	13	Saprotrop	Undefined	NULL	NULL	Probable	Probable	NULL	Tedersoo L	, et al. 2014	I. Si
OTU 20	929	123	1866	373	1844	1046	Funci	-	-	-	-	-	-	-	Unassigne	-			

E. Other analysis tools in microbial ecology

1. <u>LEfSe</u>

1.1 Input prepare for LefSe anlaysis

This tool is mainly used to merge multiple files into one file.

Input:

Input prepare for LEfSe analysis (Galaxy Version 1.0.0)	▼ Options
OTU table (tabular file)	
1 1: resample_UPARSE_otu_table.txt	•
Classification summary (tabular file)	
🗅 🖄 🗀 59: Classifier of 16srma.txt	•
The output file from rdp classifier step	
✓ Execute	

Output:

117: Input for LEISe analysis			
	"C3"	"A4"	"C5"
"Archaea"	"0.0269639773381404"	"0.117429636137789"	"0.0140273275365831"
"Bacteria"	"0.97303602266186"	"0.882570363862211"	"0.985972672463417"
"Archaea Crenarchaeota"	"3.02966037507195e-05"	"0"	"0"
"Archaea Euryarchaeota"	"0.0269336807343897"	"0.117429636137789"	"0.0140273275365831"
"Archaea Thaumarchaeota"	"0"	"0"	"0"
"Archaea Unclassified"	"0"	"0"	"0"
"Bacteria Acidobacteria"	"0.00405974490259642"	"0.00487775320386585"	"0.00130275396128094"
"Bacteria Actinobacteria"	"0.00490804980761657"	"0.0122398279152907"	"0.00281758414881692"
"Bacteria Aquificae"	"0"	"6.05932075014391e-05"	"0"
"Bacteria Armatimonadetes"	"0.000181779622504317"	"0.000363559245008635"	"0.000242372830005756"
"Bacteria Bacteroidetes"	"0.0969188353985518"	"0.102978156148696"	"0.0265398248856303"

This program is used for summarizing the relative abundance for samples at multiple taxonomic levels, which is required for further LEfSe analysis. The output format should be very similar to the following shape. Later you could modify this table according to your demand, like adding different separation standards.

1.2 A) Format Data for LefSe

A) Format Data for LEfSe (Galaxy Version 1.0)	▼ Options
Upload a tabular file of relative abundances and class labels (possibly also subclass and subjects labels) for LEfSe - See below - Please use Galaxy Get-Data/Upload-File. Use File-Type = tabular	samples
□ 42 □ 369: test files	•
Select whether the vectors (features and meta-data information) are listed in rows or columns	
Rows	•
Select which row to use as class	
#1:oxygen_availability	•
Select which row to use as subclass	
#2:body_site	•
Select which row to use as subject	
#3:subject_id	•
Per-sample normalization of the sum of the values to 1M (recommended when very low values are present)	
Yes	•
ef Europite	
▼ Execute	

1.3 B) LDA Effect Size (LEfSe)

B) LDA Effect Size (LEfSe) (Galaxy Version 1.0)	▼ Options
Select data	
🗋 🖗 🗀 1142: A) Format Data for LEfSe on data 369	•
Alpha value for the factorial Kruskal-Wallis test among classes	
0.05	
Alpha value for the pairwise Wilcoxon test between subclasses	
0.05	
Threshold on the logarithmic LDA score for discriminative features	
2.0	
Do you want the pairwise comparisons among subclasses to be performed only among the subclasses with the same na	me?
No	•
Set the strategy for multi-class analysis	
All-against-all (more strict)	•
✓ Execute	

<u>1.4 C) Plot LEfSe Results</u>

C) Plot LEfSe Results (Galaxy Version 1.0)	 Options
Select data	
1 1 373: B) LDA Effect Size (LEFSe) on data 371	•
Set text and label options (font size, abbreviations,)	
Default	•
Set some graphical options to personalize the output	
Default	•
Output format	
png	•
Set the dpi resolution of the output	
150	•
✓ Execute	

1.5 D) Plot Cladogram

D) Plot Cladogram (Galaxy Version 1.0)	▼ Options
Select data	
D 2 1144: B) LDA Effect Size (LEfSe) on data 1142	•
Set structural parameters of the cladogram	
Default	•
Set text and label options (font size, abbreviations,)	
Default	•
Set some graphical options to personalize the output	
Default	•
Output format	
png	•
Set the dpi resolution of the output	
150	•
✓ Execute	

1.6 E) Plot One Feature

E) Plot One Feature (Galaxy Version 1.0)	▼ Options
The formatted datasets	
🗋 🙆 🗀 1142: A) Format Data for LEfSe on data 369	•
The input is the result of A	
The LEfSe output	
🗅 🖄 🗀 1144: B) LDA Effect Size (LEfSe) on data 1142	•
The input is the result of B	
Select the feature names among biomarkers or all features	
Biomarkers only	•
Select the feature to plot	
Bacteria.Actinobacteria	•
Set some graphical options to personalize the output	
Default	•
Output format	
png	•
Set the dpi resolution of the output	
150	•
✓ Execute	

<u>1.7 F) Plot Differential Features</u>

F) Plot Differential Features (Galaxy Version 1.0)	▼ Options
The formatted datasets	
🗋 🖉 🗀 1142: A) Format Data for LEfSe on data 369	•
The input is the result of A	
The LEfSe output	
□ 4 □ 1144: B) LDA Effect Size (LEfSe) on data 1142	•
The input is the result of B	
Do you want to plot all features or only those detected as biomarkers?	
Biomarkers only	•
Set some graphical options to personalize the output	
Default	•
Output format	
png	•
Set the dpi resolution of the output	
150	•
✓ Execute	

2. <u>Source Tracker</u>

Please make a mapping file (tabular-separated txt) by yourself as the following format:

SampleID	Description	Env	SourceS	ink	Study	Details	
Sample1	PCR	water 1	A1	sink		Lab 1	<pre>PCR_water_sample_1</pre>
Sample2	PCR	water 2	A2	sink		Lab 2	<pre>PCR_water_sample_2</pre>
Sample3	PCR	soil 1	B1	source		Lab 1	PCR_soil_sample_1
Sample4	PCR	soil 2	B2	source		Lab 2	<pre>PCR_soil_sample_2</pre>

Input:

Source Tracker Analysis Estimate the proportion of contaminants in a given community (Galaxy Version 1.0.0)	Options
OTU table	
🖸 🖗 🗀 1521: otu.txt	•
Data must be integeral counts.	
Mapping files	
□ 4 □ □ 1517: mapping.txt	•
Must identify sink and source information at correct columns.	
Number of restarts of Gibbs sampling	
10	
Number of burn-in iterations for Gibbs sampling	
10	
Rarefaction depth, 0 for none (default 1000)	
100	
Training data rarefaction depth, 0 for none (default 1000)	
100	
Predict source samples using leave-one-out predictions (default: FALSE)	
OTRUE	
● FALSE	
alpha1: Dirichlet hyperparameter for taxa/genes in known environments (default: 1e-3)	
0.001	
alpha2: Dirichlet hyperparameter for taxa/genes in unknown environments (default: 1e-1)	
0.001	
beta: Dirichlet hyperparameter for mixture of environments (default: 1e-2)	
0.01	
Tune alpha values using cross-validation on the training set with this many trials (suggest at least 25); (default: 0, no tun	ing)
0	
Evaluate quality of fit to the data using simulations. Ignored if less than or equal totune_alpha ntrials (default: 0)	
0	
✓ Execute	

Output:

1524: Summary of source trakcer analysis

1523: SourceTrackerSE otu.txt

1522: SourceTracker otu.txt

F. Auxilliary tools in miscellaneous section

1. FastQC

Input:

Fastqc: Fastqc Q	Cusing FastQC from Babraham (Galaxy Version 0.3)
Short read data f	rom your current history
C 4 C	9: TrimPrimer_tagged1_R1.fastq.fastq
Title for the outp	ut file - to remind you what the job was for
FastQC	
Contaminant list	
C 4 C	Nothing selected
tab delimited file w	ith 2 columns: name and sequence. For example: Illumina Small RNA RT Prin

Output:

➢ FastQC.html

2. Split files into separated samples

This tool is mainly used to separate sequences within one file to multiple independent files. Then you could easily upload these sequence files to NCBI Sequence Read Archieve (SRA).

FASTA

Input:

Output:

588: split_{Combined.fastq}.fasta .gz_
325,937 lines
格式: zip, 数据库: <u>?</u>
10.fasta
11.fasta
12.fasta
13.fasta
14.fasta
15.fasta
16.fasta
17.fasta
18.fasta
19.fasta
1.fasta
20.fasta
21.fasta
22.fasta
23.fasta
24.fasta
25.fasta
26.fasta

After download it to local directory, you need to unzip this file twice. For the first step of unzipping process, you can easily unzip it. For the second step of unzipping process, you need to rename the extension file type to ".zip" or ".gz" and thereafter you could to unzip this file. After the two steps of unzipping, you can see the separated fasta or fastq files.

FASTQ

Similar options as above FASTQ program.

3. FASTQ format check

This tool is mainly used to check the file format of a fastq file, four lines for each sequence.

Input:

Output:

- Checked Combined.fastq
- Fastq check summary

4. Length Statistics

This tool is to summary the length distribution for fasta or fastq file.

Input:

Length statistics Quick information about the sequences length distribution (Galaxy Version 1.0.0)			
Input file format			
FASTA			
fasta file	990: Remove_N.fasta		
✓ Execute			

Options:

Input file format: FASTA / FASTQ

Output:

Sun	nmary:		
The to	tal sequence number: 38049.		
The av	verage length of the sequences: 293.36		
Sequence length distribution:			
The m	inimum length is: 201		
The maximum length is: 427			
Data			
Lengt	h Seq nubmer		
201	117		
202	165		
203	132		
204	89		
205	100		

5. Sequence number for each tag

This tool is mainly used to make a summary sequence numbers for each tag.

FASTQ

Input:

Output:

> Tag_stat.txt

# Total sequence i	number 909188
A1	48461
A2	44966
A3	72585
A4	51772
A5	44331

FASTA

Similar options as above FASTQ program.

6. Merge and add tags for each sequence

This tool is mainly used to merge multiple files and add a tag "--tag" for each sequence, which is required in this analysis pipeline. This is very helpful if you have multiple sample files and want to use this pipeline to conduct sequencing and statistical analysis. Please rename the file names like **A1.fasta**, **B1.fasta**, **C1.fasta** or **A1.fastq**, **B1.fastq**, **C1.fastq**.

Input:

elect input file format Tasta format Select multiple files 5: 3C.rags.rasta 3: 25.fasta 3: 25.fasta 2: 2C.fasta 1: 2A.fasta	- usino CTRL.
asta format Select multiple files 5: 3C. TagS.TaSta 3: 25.fasta 3: 25.fasta 2: 22.fasta 1: 2A.fasta 1: 2A.fasta	using CTRL.
Select multiple files 5: 3C-1035,14543 3: 25,5454 3: 25,5454 2: 2C,fasta 1: 2A,fasta 1: 2A,fasta	using CTRL.
80 C 5: 3C.: rags:rasta 31: 25.fasta 31: 25.fasta 21: 2C.fasta 21: 2C.fasta	using CTRL.
3: 25.18518 2: 2C.fasta 1: 2A.fasta	using CTRL.
	using CTRL.
Please rename your selected file refering to specific format (showing below). Select multiple files using CTRL.	2
name the merged file	
Renamed file	

A1 is the sample name. Please use simple names and not use special symbols in the name, like ".", "-", ", ", "#".

Options:

Input file format: Fasta format / Fastq format

Output:

Renamed file for fasta

```
>2A_Tag1--2A
TACGGAGGGTGCAAGCGTTGCTCGGAATTACTGGGCGTA/
>2A_Tag2--2A
TACGGAGGATGCAAGCGTTATCCGGATTCATTGGGTTTA/
>2A_Tag3--2A
CACCGGCGGCTCGAGTGGTAACCGTTATTATTGGGTCTA/
>2A_Tag4--2A
CACCGGCAGCTCAAGTGGTGGCCATTTTATTGGGCCTA/
>2A_Tag5--2A
CACCGGCGGCTCGAGTGGTAACCGTTATTATTGGGTCTA/
>2A_Tag6--2A
CACCGGCAGCTCAAGTGGTGGCCATTTTATTGGGCCTA/
```

Sequences numbers for each tag

2A	34925
2C	35278
2S	35599

7. Merge files

This tool is mainly used to merge multiple files into one file.

Input:

Merge Files Merge two files (Galaxy Version 1.0)	▼ Options
File1	
□ 4 □ 97: DXAL	•
File2	
□ 4 □ 58: XXAL.fastq	•
Additional file for merging	
1: Additional file for merging	Ŵ
Additional file	
2 2 38: TTS.fastq	•
2: Additional file for merging	Ŵ
Additional file	
D 29: XXBN_CBS.fastq	•
+ Insert Additional file for merging Insert more files if you have multiple files to rename the merged file	o merge
Succession	
✓ Execute	

Output:

Succession (If you put another name in the "rename the merged file", it will show what you have fill in.)

8. Data location

This tool is mainly used to find the data location for certain dataset in the server. The data location is helpful to find the dataset for Galaxy adminstrators when you have problems.

Input:

Data Location Data location in the galaxy server (Galaxy Version 1.0.0)				
Input file				
C 2 C	1690: R2.fastq	•		
✓ Execute				

Output:

> file_location.txt

/newdatabase1/galaxy/user_data/datasets/000/105/dataset_105483.dat

G. Operation tricks and common problem solutions

1. Basic operations in Galaxy

Please remember to choose "choose permanently" if you want to erase your history permanently, otherwise it will store into a temporary place and your quota will not decrease. See the below introduction for how to find temporarily deleted history.

Copy datasets:

Source History:	Destination History:
2: Galaxy_Text_compare	→ 1: For test analysis
All None	Choose multiple histories
I: Galaxy50-[tagged1_16S_2_wzy_R1.fastq	
2: Galaxy51-[tagged2_16S_2_wzy_R2.fastq	— OR —
	New history named:
7: 16S_2barcode_wzy.txt	
🗆 11: Galaxy4-	Copy History Items

2. Shared test datasets

🔁 Galaxy / DengLab	Analyze Data Workflow Visualize Shared Data Admin Help User 🗰
Tools	Welcome to Metagenomics for Histories
Upload	(DengLab)! Workflows
Amplicon sequence analysis tools	Visualizations
Statistics analysis tools	This analysis pipeline is built and maintained Pages table for high-throughput
Ecological process analysis	sequencing data analysis, focusing on amplic
picrust	functional genes).
Tax4Fun	Please see the workflow below and download the procedure file for more details.
FunGuild	
FAPROTAX	If you are interested in our sequencing analysis pipeline, please contact with Prof. Ye Deng
BugBase	(yedeng@rcees.ac.cn). Please send your username(E-mail), password, and name as well if you want to
<u>LEfSe</u>	register an account.
Course Teacher	
DATA LIBRARIES « 0 1 2 »	5 libraries shown (change) 5 total Great Library U include deleted exclude restricted + New Library O Help

<u>name</u> l [≜]	description	synopsis			
16S data library	for denglab		ø	🖋 Edit	🖀 Manage
<u>185 ref</u>	For classification and phylogenetic analysis. silva_132_97_185.fna is from Qiime	Silva and PR2 database uploaded by Lishuzhen.	۵	🖋 Edit	🖀 Manage
ITS refs			0	🖋 Edit	曫 Manage
mcrA	Functional gene		0	🖋 Edit	🖀 Manage
<u>Test data</u>	For users to learn how to use this pipeline		۲	🖋 Edit	🖀 Manage

DATA LIBRARIES 📄 include deleted 🕇 🖿 Create Folder	+ To History 🔹 🗈 Download 🝷	to Delete O Details O Help	
Libraries / Test data			
□ <u>name</u> l ^A ₂	description	<u>data type</u> size	time updated (UTC) <u>state</u>
🗅 🔲 barcode.txt		tabular 1.4 KB	2018-10-30 04:58 AM 😵 📽 Manage
🗅 📄 <u>R1.fastq</u>		fastqsanger 538.2 MB	2018-10-30 04:58 AM 🚱 📽 Manage
C R2.fastq		fastqsanger 539.4 MB	2018-10-30 04:58 AM 🚱 📽 Manage
Sample list for rarefaction curve.txt		txt 60 bytes	2018-10-30 04:58 AM 🔇 🖀 Manage
Treatment file for dissimilarity.txt		tabular 90 bytes	2018-10-30 04:58 AM 😡 🗑 🎬 Manage

3. Shared libraries

🔁 Galaxy / DengLab	Analyze Data Workflow Visualize *	Shared Data • Admin	Help 🕶 User 🕶 🌉
Tools Image: Constraint of the second se	Welcome to Metagenomics for (DengLab)! This analysis pipeline is built and maintained sequencing data analysis, focusing on amplic functional genes). Please see the workflow below and downloa If you are interested in our sequencing analysi (yedeng@rcees.ac.cn), Please send your usern register an account.	Data Libraries Histories Workflows Visualizations Pages d the <u>procedure file</u> for s pipeline, please contact ame(E-mail), password, a	A microbiology table for high-throughput 5 rRNA, ITS, 185 rRNA and more details. : with Prof. Ye Deng and name as well if you want to
Course Too alaan			

DATA LIBRARIES « 0 1 2 » 5 libraries sh	own <u>(change)</u> 5 total Great Library	include deleted exclude restricted	+ New Library	0 Help		
namel ^a	description	synopsis				
<u>165 data library</u>	for denglab			0	🖋 Edit	管 Manage
<u>185 ref</u>	For classification and phylogenetic analysis. silva_132_97_18S.fna is from Qiime	Silva and PR2 database uploaded by Lishuzhen.		0	🖋 Edit	👹 Manage
ITS refs				0	🖋 Edit	管 Manage
mcrA	Functional gene			0	🖋 Edit	管 Manage
Test data	For users to learn how to use this pipeline			0	🖋 Edit	🖀 Manage

Currently, we provided three shared libraries for 16S, 18S, ITS and mcrA. Please find relevant datasets to import into your history.

DATA LIBRARIES 🗌 include deleted	+ 🖿 Create Folder	🖉 To History 🔹 🚺 Impo	rt to history	🛍 Delete	0 Details	O Help		
Libraries / 16S data library		as Datasets						
name 14	d	escription		lata type si	ize	time updated (UTC)	state	
☐ Galaxy68-[core set 16s u	naligned.fasta].fasta		f	asta 7	.2 MB	2014-12-09 01:30 AM	(🖉 🔮 Manage
Import into History								
Select history: For test analysis	T							
or create new: name of the new hi	story							
				29: Gala	<u>nxy68-[cor</u>	<u>e set 16s unali</u>	g <u>ne</u> 💿	@ ×

Close

Import

d.fasta].fasta

4. Dataset deletions

Select "saved history" and further choose "Advanced Search" button:

Saved Histories

Choose "all" button to show all history that you have created in your account. And select the deleted history to further erase or retrieve.

Saved Histories

Close Advanced Search				
name:		٩		
tags:		٩		
sharing:	accessible all private	published shared		
status:	active all			

5. Share historys to other users

Select "share or publish" of a certain history, then fill in the individual users:

